ПAmIBIA UחIVERSITY
 OF SCIEПCE AПD TECHחOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science ; Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSOC; 07BAMS	LEVEL: 6
COURSE CODE: ODE602S	COURSE NAME: ORDINARY DIFFERENTIAL EQUATIONS
SESSION: JANUARY 2020	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMETARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	DrA.S EEGUNJOBI
MODERATOR:	DrI.K.O AJIBOLA

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

QUESTION 1 [30marks]

1. (a) Solve the following differential equations:
i.

$$
\begin{equation*}
y^{\prime}(x)=e^{x+y}+x^{2} e^{y} \tag{5}
\end{equation*}
$$

ii.

$$
\begin{equation*}
y d x\left(1+x^{2}\right) \tan ^{-1} x d y=0 \tag{5}
\end{equation*}
$$

iii.

$$
\begin{equation*}
x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0 \tag{7}
\end{equation*}
$$

(b) Determine the solution of the following differential equations:

$$
\begin{equation*}
y^{\prime}(x)=\frac{y-x+1}{x+y-5} \tag{7}
\end{equation*}
$$

ii.

$$
\begin{equation*}
y^{\prime}(x)+\frac{y}{x}=y^{2} \tag{6}
\end{equation*}
$$

QUESTION 2 [25 marks]

2. (a) i. If $y_{1}(x)$ and $y_{2}(x)$ are two solutions of second order homogeneous differential equation of the form

$$
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=0
$$

where $p(x)$ and $q(x)$ are continuous on an open interval I, then show that

$$
W\left(y_{1}(x), y_{2}(x)\right)=c e^{-\int p(x) d x}
$$

where c is a constant.
ii. Use reduction of order method to find $y_{2}(x)$ if

$$
y^{\prime \prime}-6 y+9=0 ; \quad y_{1}(x)=e^{3 x}
$$

(b) Solve the following:
i.

$$
\begin{equation*}
y^{\prime \prime}(x)-6 y^{\prime}(x)+34 y(x)=0 \tag{7}
\end{equation*}
$$

ii.

$$
\begin{equation*}
y^{\prime \prime}(x)-3 y^{\prime}(x)-4 y(x)=0, \quad y(0)=2, \quad y^{\prime}(0)=3 \tag{7}
\end{equation*}
$$

QUESTION 3 [21 marks]

3. (a) Solve the Euler equation

$$
6 x^{2} y^{\prime \prime}(x)+5 x y^{\prime}(x)-y(x)=0, \quad y(1)=2, \quad y^{\prime}(1)=\frac{7}{3}
$$

(b) Solve the following differential equations by method of variation of parameters $y^{\prime \prime}(x)+y(x)=\tan x$
(c) Solve the following differential equations by method of undetermined coefficient

$$
\begin{equation*}
y^{\prime \prime}(x)+2 y^{\prime}(x)+2 y(x)=-e^{x}(5 x-11), y(0)=-1, \quad y^{\prime}(0)=-3 \tag{8}
\end{equation*}
$$

QUESTION 4 [25 marks]

4. (a) i. Solve using Laplace transform

$$
\begin{equation*}
y^{\prime \prime}(t)-2 y^{\prime}(t)+2 y(t)=\cos t, \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{7}
\end{equation*}
$$

ii. If

$$
f(t)=\left\{\begin{array}{l}
\sin t, \quad \text { if } 0 \leq t \leq \pi \tag{7}\\
0, \quad \text { if } t>\pi,
\end{array}\right.
$$

find $\mathcal{L}\{f(t)\}$
iii. Compute

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{1}{4 s^{2}+1}\right\} \tag{3}
\end{equation*}
$$

(b) Solve the following differential equation by using Laplace transform

$$
\begin{equation*}
y^{\prime \prime}(t)+y^{\prime}(t)+y(t)=\sin t, \quad y(0)=1, \quad y^{\prime}(0)=-1 \tag{7}
\end{equation*}
$$

